
Mr.V.Malsoru, Naresh Bollam/ International Journal of Engineering Research and Applications (IJERA)                 
ISSN: 2248-9622                           www.ijera.com 

Vol. 1, Issue 3, pp.1088-1091 

1088 | P a g e  

 

                                                                                                                               
REVIEW ON DATA LEAKAGE DETECTION. 

 
 

Naresh Bollam 
M.tech(C.S.E)                                                                        
Jits,karimnagar 

 

 
Mr.V.Malsoru 

M.tech(S.E),Assosciate Professor 
Dept Of C.S.E,Jits Karimnagar 

                 
 Abstract — In this paper, we present a mechanism for proof of ownership based on the secure embedding of a 
robust imperceptible watermark in relational data. We formulate the watermarking of relational database as a constraint 
optimization problem and discuss efficient techniques to solve the optimization problem and handle the constraint. We 
study the following problem: A data distributor has given sensitive data to a set of supposedly trusted agents. Some of the 
data is leaked and found in an un authorized place. The distributor must assess the likelihood that the leaked came from 
one or more agents, as opposed to having been independently gathered by other means. We propose data allocation 
strategies that improve the probability of identifying leakages. In some cases we can also inject “realistic but fake” data 
record to further improve our changes of detecting leakage and identifying the guilty party. 
 
 
 
 
1    INTRODUCTION 
 
In the course of doing business, sometimes sensitive data 
must be handed over to supposedly trusted third parties. 
For example, a hospital may give patient records to 
researchers who will devise new treatments. Similarly, a 
company may have partnerships with other companies that 
require sharing customer data. Another enterprise may 
outsource its data processing, so data must be given to 
various other companies. We call the owner of the data the 
distributor and the supposedly trusted third parties the 
agents. Our goal is to detect when the distributor’s 
sensitive data has been leaked by agents, and if possible to 
identify the agent that leaked the data. 
 
We consider applications where the original sensitive data 
cannot be perturbed. Perturbation is a very useful technique 
where the data is modified and made “less sensitive” 
before being handed to agents. For example, one can add 
random noise to certain attributes, or one can replace exact 
values by ranges.However, in some cases it is important 
not to alter the original  
 
 
distributor’s data. For example, if an outsourcer is doing 
our payroll, he must have the exact salary and customer 
bank account numbers. If medical researchers will be 
treating patients (as opposed to simply computing statis-
tics), they may need accurate data for the patients. 
 

 
 
Traditionally, leakage detection is handled by water-
marking, e.g., a unique code is embedded in each dis-
tributed copy. If that copy is later discovered in the hands 
of an unauthorized party,  
 
  
the leaker can be iden-tified. Watermarks can be very 
useful in some cases, but again, involve some modification 
of the original data. Furthermore, watermarks can 
sometimes be destroyed if the data recipient is malicious. 
 
In this paper we study unobtrusive techniques for de-
tecting leakage of a set of objects or records. Specifically, 
we study the following scenario: After giving a set of 
objects to agents, the distributor discovers some of those 
same objects in an unauthorized place. (For example, the 
data may be found on a web site, or may be obtained 
through a legal discovery process.) At this point the 
distributor can assess the likelihood that the leaked data 
came from one or more agents, as opposed to having been 
independently gathered by other means. Using an analogy 
with cookies stolen from a cookie jar, if we catch Freddie 
with a single cookie, he can argue that a friend gave him 
the cookie. But if we catch Freddie with 5 cookies, it will 
be much harder for him to argue that his hands were not in 
the cookie jar. If the distributor sees “enough evidence” 
that an agent leaked data, he may stop doing business with 
him, or may initiate legal proceedings. 



Mr.V.Malsoru, Naresh Bollam/ International Journal of Engineering Research and Applications (IJERA)                 
ISSN: 2248-9622                           www.ijera.com 

Vol. 1, Issue 3, pp.1088-1091 

1089 | P a g e  

 

In this paper we develop a model for assessing the “guilt” 
of agents. We also present algorithms for dis-tributing 
objects to agents, in a way that improves our chances of 
identifying a leaker. Finally, we also consider the option of 
adding “fake” objects to the distributed set. Such objects do 
not correspond to real entities but appear realistic to the 
agents. In a sense, the fake objects acts as a type of 
watermark for the entire set, without modifying any 
individual members. If it turns out an agent was given one 
or more fake objects that were leaked, then the distributor 
can be more confident that agent was guilty. 
 
PROBLEM  SETUP  AND  NOTATION  
2.1    Entities and Agents 
 
objects with a set of agents U1, U2, ..., Un, but does not 
wish the objects be leaked to other third parties. The 
objects in T could be of any type and size, e.g., they could 
be tuples in a relation, or  
relations in a database. 
 
An agent Ui receives a subset of objects Ri � T , 
determined either by a sample request or an explicit 
request: 
 
• Sample request Ri = SAMPLE(T, mi): Any subset  
of mi records same time, company A subcon-tracts with 
agent U2 to handle billing for all California customers. 
Thus, U2 receives all T records that satisfy the condition 
“state is California.” 
 
2.2    Guilty Agents 
 
Suppose that after giving objects to agents, the distrib-utor 
discovers that a set S � T has leaked. This means that some 
third party called the target, has been caught in possession 
of S. For example, this target may be displaying S on its 
web site, or perhaps as part of a legal discovery process, 
the target turned over S to the distributor. 

 
Since the agents U1, . . . , Un have some of the data, it is 

reasonable to suspect them leaking the data. However, the 
agents can argue that they are innocent, and that the S data 
was obtained by the target through other means. For 
example, say one of the objects in S represents a customer 
X. Perhaps X is also a customer of some other company, 
and that company provided the data to the target. Or 
perhaps X can be reconstructed from various publicly 
available sources on the web. 
 
Our goal is to estimate the likelihood that theleaked data 
came from the agents as opposed to other sources. 
Intuitively, the more data in S, the harder it is for the agents 

to argue they did not leak anything. Similarly, the “rarer” 
the objects, the harder it is to argue that the target obtained 
them through other means. Not only do we want to 
estimate the likelihood the agents leaked data, but we 
would also like to find out if one of them in particular was 
more likely to be the leaker. For instance, if one of the S 
objects was only given to agent U1, while the other objects 
were given to all agents, we may suspect U1 more. The 
model we present next captures this intuition. 

 
We say an agent Ui is guilty and if it contributes one or 
more objects to the target. We denote the event that agent 
Ui is guilty as Gi and the event that agent Ui is guilty for a 
given leaked set S as Gi|S. Our next step is to estimate P 
r{Gi|S}, i.e., the probability that agent Ui is guilty given 
evidence S. 
 
3    RELATED  WORK 
 
The guilt detection approach we present is related to the 
data provenance problem  tracing the lineage of S objects 
implies essentially the detection of the guilty agents. 
Tutorial provides a good overview on the research 
conducted in this field. Suggested solutions are domain 
specific, such as lineage tracing for data warehouses and 
assume some prior knowledge on the way a data view is 
created out of data sources. Our problem formulation with 
objects and sets is more general and simplifies lineage 
tracing, since we do not consider any data transformation 
from Ri sets to S. 
 

As far as the data allocation strategies are concerned, our 
work is mostly relevant to watermarking that is used as a 
means of establishing original ownership of distributed 
objects. Watermarks were initially used in images video 
and audio data whose digital representation includes 
considerable redundancy. Recently,and other works have 
also studied marks insertion to relational data. Our 
approach and watermarking are similar in the sense of 
providing agents with some kind of receiver-identifying 
informa-tion. However, by its very nature, a watermark 
modifies the item being watermarked. If the object to be 
water-marked cannot be modified then a watermark cannot 
be inserted. In such cases methods that attach watermarks 
to the distributed data are not applicable. 
 

Finally, there are also lots of other works on mecha-
nisms that allow only authorized users to access sensi-tive 
data through access control policies. Such ap-proaches 
prevent in some sense data leakage by sharing information 
only with trusted parties. However, these policies are 
restrictive and may make it impossible to satisfy agents’ 
requests. 



Mr.V.Malsoru, Naresh Bollam/ International Journal of Engineering Research and Applications (IJERA)                 
ISSN: 2248-9622                           www.ijera.com 

Vol. 1, Issue 3, pp.1088-1091 

1090 | P a g e  

 

 
 
4    AGENT  GUILT  MODEL 
 

To compute this P r{Gi |S}, we need an estimate for the 
probability that values in S can be “guessed” by the target. 
For instance, say some of the objects in S are emails of 
individuals. We can conduct an experiment and ask a 
person with  
The distributor may be able to add fake objects to the 
distributed data in order to improve his effectiveness in 
detecting guilty agents. However, fake objects may impact 
the correctness of what agents do, so they may not always 
be allowable approximately the expertise and resources of 
the target to find the email of say 100 individuals. If this 
person can find say 90 emails, then we can reasonably 
guess that the probability of finding one email is 0.9. On 
the other hand, if the objects in question are bank account 
numbers, the person may only discover say 20, leading to 
an estimate of 0.2. We call this estimate pt, the probability 
that object t can be guessed by the target. 
 
Probability pt is analogous to the probabilities used in 
designing fault-tolerant systems. That is, to estimate how 
likely it is that a system will be operational throughout a 
given period, we need the probabilities that individual 
components will or will not fail. A component failure in 
our case is the event that the target guesses an object of S. 
The component failure is used to compute the overall 
system reliability, while we use the probability of guessing 
to identify agents that have leaked information. The 
component failure probabilities are estimated based on 
experiments, just as we propose to estimate the pt’s. 
Similarly, the component probabilities are usually 
conservative estimates, rather than exact numbers. For 
example, say we use a component failure probability that is 
higher than the actual probability, and we design our 
system to provide a desired high level of reliability. Then 
we will know that the actual system will have at least that 
level of reliability, but possibly higher. In the same way, if 
we use pt’s that are higher than the true values, we will 
know that the agents will be guilty with at least the 
computed probabilities. 
 
5    GUILT  MODEL  ANALYSIS 
 
In order to see how our model parameters interact and to 
check if the interactions match our intuition, in this section 
we study two simple scenarios. In each scenario we have a 
target that has obtained all the distributor’s objects, i.e., T = 
S. 
6    DATA  ALLOCATION  PROBLEM 
 

The main focus of our paper is the data allocation prob-
lem: how can the distributor “intelligently” give data to 
agents in order to improve the chances of detecting a guilty 
agent? As illustrated in Figure 2, there are four instances of 
this problem we address, depending on the type of data 
requests made by agents and whether “fake objects” are 
allowed. 
 
  The idea of perturbing data to detect leakage is not 
new,However, in most cases, individual objects are 
perturbed, e.g., by adding random noise to sensitive 
salaries, or adding a watermark to an image. In our case, 
we are perturbing the set of distributor objects by adding 
fake elements. In some applications, fake objects may 
cause fewer problems that perturbing real objects. For 
example, say the distributed data objects are medical 
records and the agents are hospitals. In this case, even 
small modifications to the records of actual patients may be 
undesirable. However, the addition of some fake medical 
records may be acceptable, since no patient matches these 
records, and hence no one will ever be treated based on 
fake records. 
 
    Our use of fake objects is inspired by the use of “trace” 
records in mailing lists. In this case, company A sells to 
company B a mailing list to be used once (e.g., to send 
advertisements). Company A adds trace records that 
contain addresses owned by company A. Thus, each time 
company B uses the purchased mailing list, A receives 
copies of the mailing. These records are a type of fake 
objects that help identify improper use of data. 
 

The distributor creates and adds fake objects to the data 
that he distributes to agents. We let Fi � Ri be the subset of 
fake objects that agent Ui receives. As discussed below, 
fake objects must be created carefully so that agents cannot 
distinguish them from real objects. 
 
   7 CONCLUSIONS 
 
In a perfect world there would be no need to hand over 
sensitive data to agents that may unknowingly or 
maliciously leak it. And even if we had to hand over sen-
sitive data, in a perfect world we could watermark each 
object so that we could trace its origins with absolute 
certainty. However, in many cases we must indeed work 
with agents that may not be 100% trusted, and we may not 
be certain if a leaked object came from an agent or from 
some other source, since certain data cannot admit 
watermarks. 
 
In spite of these difficulties, we have shown it is pos-sible 
to assess the likelihood that an agent is responsible for a 



Mr.V.Malsoru, Naresh Bollam/ International Journal of Engineering Research and Applications (IJERA)                 
ISSN: 2248-9622                           www.ijera.com 

Vol. 1, Issue 3, pp.1088-1091 

1091 | P a g e  

 

leak, based on the overlap of his data with the leaked data 
and the data of other agents, and based on the probability 
that objects can be “guessed” by other means. Our model is 
relatively simple, but we believe it captures the essential 
trade-offs. The algorithms we have presented implement a 
variety of data distribution strategies that can improve the 
distributor’s chances of identifying a leaker. We have 
shown that distributing objects judiciously can make a 
significant difference in identifying guilty agents, 
especially in cases where there is large overlap in the data 
that agents must receive. 
 

Our future work includes the investigation of agent guilt 
models that capture leakage scenarios that are not studied 
in this paper. For example, what is the appro-priate model 
for cases where agents can collude and identify fake 
tuples? A preliminary discussion of such a model is 
available in.Another open problem is the extension of our 
allocation strategies so that they can handle agent requests 
in an online fashion (the presented strategies assume that 
there is a fixed set of agents with requests known in 
advance). 

 
ACKNOWLEDGMENTS 
 
This work was supported by NSF Grant CFF-0424422 and 
an Onassis Foundation Scholarship. We would like thank 
Paul Heymann for his help with running the non-
polynomial guilt model detection algorithm that we present 
in the Appendix of  on a Hadoop cluster. We also thank 
Ioannis Antonellis for fruitful discussions and his 
comments on earlier versions of this paper. 
 
REFERENCES  
[1] R. Agrawal and J. Kiernan. Watermarking relational 

databases. In VLDB ’02: Proceedings of the 28th 
international conference on Very Large Data Bases, 
pages 155–166. VLDB Endowment, 2002.   

[2] P. Bonatti, S. D. C. di Vimercati, and P. Samarati. An 
algebra for composing access control policies. ACM 
Trans. Inf. Syst. Secur., 5(1):1–35, 2002.   

[3] P. Buneman, S. Khanna, and W. C. Tan. Why and 
where: A characterization of data provenance. In J. V. 
den Bussche and   
V. Vianu, editors, Database Theory - ICDT 2001, 8th 
International Conference, London, UK, January 4-6, 
2001, Proceedings, volume 1973 of Lecture Notes in 
Computer Science, pages 316–330. Springer, 2001. 

[4] P. Buneman and W.-C. Tan. Provenance in databases. 
In SIGMOD ’07: Proceedings of the 2007 ACM 
SIGMOD international conference on Management of 
data, pages 1171–1173, New York, NY, USA, 2007. 

ACM.   
[5] Y. Cui and J. Widom. Lineage tracing for general data 

warehouse transformations. In The VLDB Journal, 
pages 471–480, 2001.   

[6] S. Czerwinski, R. Fromm, and T. Hodes. Digital music 
distribution and audio watermarking.   

F. Guo, J. Wang, Z. Zhang, X. Ye, and D. Li. Information 
Security Applications, pages 138–149. Springer, Berlin / 
Heidelberg, 2006. An Improve



Mr.V.Malsoru, Naresh Bollam/ International Journal of Engineering Research and 
Applications (IJERA)                 ISSN: 2248-9622                           www.ijera.com 

Vol. 1, Issue 3, pp.1088-1091 

1092 | P a g e  

 

 


